A COMPREHENSIVE REVIEW ON MULTI-VIEW CHEST X-RAY 3D RECONSTRUCTION FOR ENHANCED THORACIC DISEASE DIAGNOSIS

¹Mr. Birudev Yele, ²Dr. Waseem Mir

Faculty of Science and Technology , School of Computational Sciences , JSPM UNIVERSITY, PUNE Wagholi, Pune 412207, Maharashtra, India^{1,2}

birudevyele2000@gmail.com¹, waseemmir78177@gmail.com²

ABSTRACT

In thoracic medicine, accurate diagnosis is crucial to patient care. If not identified early and correctly, thax-related conditions such as pneumonia, tuberculosis, lung cancer, and other cardiopulmonary diseases can have serious health consequences. Therefore, one of the most important steps in improving patient outcomes is increasing diagnostic accuracy. Because of their affordability, speed, and accessibility, chest X-rays (CXRs) are one of the most widely used imaging methods; however, they are essentially 2D predictions of 3D anatomical structures. The depth information is compressed by this flat representation, which frequently results in overlapping anatomical features. Because of this, it may be difficult to determine the precise location, size, or depth of lesions, which could result in a misdiagnosis or misunderstanding. Techniques for multi-view 3D reconstruction are being investigated in order to get around the drawbacks of 2D imaging. The goal of these techniques is to use several 2D X-ray views to create a 3D volumetric representation of the thorax. Clinicians will gain a better understanding of spatial connections within the thoracic cavity as a result, which will be especially helpful for lung pathologies, tumor localization, and surgical planning. Recent developments in deep learning and 3D vision have given rise to Neural Radiance Fields (NeRFs) — deep neural networks that learn to encode 3D scenes from multiple 2D images. A variant specifically designed for the medical imaging setting, called MedNeRF (Medical Neural Radiance Fields), is utilized in this work. MedNeRF is made suitable for medical imaging settings and can learn the volumetric shape of the thorax from multiple X-ray views. NeRFs learn by optimizing a neural network to produce color and density values along rays intersecting a scene. For medicine, this enables the model to encode intricate internal structures such as ribs, lungs, and heart tissues into a coherent 3D model.

Keywords— Chest Radiography, X-ray Imaging, Medical Imaging, Neural Rendering, 3D Volume Reconstruction, 2D-to-3D Conversion, Deep Learning in Radiology, Computer Vision in Healthcare, Neural Implicit Representations, Volumetric Medical Data, AI in Diagnostic Imaging, Image-based Reconstruction, Clinical Imaging Analysis

INTRODUCTION

Years have seen the imaging industry advance to a level that has transformed the way medical practitioners diagnose and manage diseases. Of the procedures employed in imaging, X-ray imaging is one of the most used tools because it is non-invasive and offers very useful information about a patient's status. CXR in particular are involved in the diagnosis and follow-up of thoracic diseases from pneumonia to cancer of the lung. Nonetheless, in spite of advancements in medical imaging technology, there exist restraints in interpreting 2D CXR. These restraints tend to cause difficulties in attempts to make accurate diagnoses. To proceed beyond these restraints researchers and physicians directed their focus towards view 3D reconstruction methods as a viable method, for enhancing diagnostics precision and in due course improving patient care.

The thorax is an area of the body that is important in terms of containing vital organs such as the heart and lungs, and as such, for imaging it is also crucial. CXR have been the standard for both imaging and analysis because they

can capture and analyze information in a two-dimensional format, but it is limited, given that there lacks depth perception, structures overlap, and we can have difficulty distinguishing between pieces of different tissues that are on top of each other. Therefore, this can result in missing diagnoses, delayed treatment, and increased healthcare costs.

These limitations in conventional 3D reconstruction techniques are presently being alleviated through the development of multi-view technologies. By combining multiple views of the X-ray obtained at different angles using advanced computational algorithms, a comprehensive three-dimensional image of the thorax can be reconstructed. Not only does this sophisticated reconstruction preserve depth information but also allows for the discrimination between overlapping structures, thereby ensuring a better and more accurate assessment of thoracic anatomy and disease.

Join me on an important journey to explore the potential of multi-view 3D reconstruction to improve the diagnosis of thoracic diseases from CXR images. We'll begin with an exploration into the history of CXR imaging to better contextualize this new approach.

LITERATURE REVIEW

New 3D X-ray imaging methods that integrate multiple views are revolutionizing medical imaging. The technology is of enormous potential in transforming the diagnosis and treatment of diseases. However, if it is to be successfully integrated into daily clinical practice, some hurdles need to be addressed. The table below shows a comprehensive review of the past decade's research studies, highlighting these limitations that need to be addressed.

TABLE I: COMPARISON OF METHODS AVAILABLE THE LITERATURE

Citatio	Author	Year	Methods/models	Limitations	Dataset used
n					
Error!	J. Ni et al.	2022	DenseNet-121 includes four	The sensitivity of the	224,316 chest imaging
Refere			AvgPool layers and 120	proposed method to	photos labeled with 14
nce			convolutions. To allow deeper	imperfections and	prevalent diseases from
source			layers to make effective use of	noise in CXR images	CheXpert and 377,110
not			features gathered at lower	is a significant	chest imaging photos
found.			levels, this model disperses	concern because	labeled with 14
			weights across every single	lower quality images	prevalent diseases from
			layer, including dense blocks	may lead to lower	MIMIC-CXR-JPG.
			and transition layers.	accuracy.	
Error!	Khan,	2018	• Iterative Closest Point (ICP):	It is extremely	Used several datasets
Refere	Usman et		The point-to-point registration	difficult to determine	including data from the
nce	al.		method decreases the distance	which of the methods	NIST Digital Imaging
source			between two images' matching	presented in this paper	and Remote Sensing
not			points.	are usable for	Laboratory (DIRS), the
found.			•Volumetric Fusion: This	applications since it	Medical Imaging and
			method produces a single	does not examine the	Analysis Laboratory
			volume by combining multiple	computational	(MIAL), and FE
			images in one.	difficulty of the	

			• Surface Reconstruction: This	methods (hopefully	
			method employs a volume to	the remark regarding	
			create a surface model.	computational	
			• Multi-view Stereo: This	difficulty was clear	
			method produces a 3D	enough), and it does	
			depiction with the aid of many	not provide	
			photographs of an object.	information about	
				how each method can	
				be applied in context	
				of the application.	
Error!	Koehler et	2010	The Iterative Closest Point	The ICP method is	a random sample of
Refere	al.		(ICP) method generates a 3D	computationally and	10,000 chest X-ray
nce			representation of the rib cage	temporally expensive,	images with a diagnosis
source			by first applying a coarse-to-	and it is sensitive to	of "pneumothorax"
not			fine geometric model to the	noise and artifacts.	obtained from MIMIC-
found.			CXR images.		CXR-JPG and
					CheXpert.
Error!	Corona-	2022	The Transformer-based	The model requires	The extensive publicly
Refere	Figueroa,		Generative Adversarial	biplanar CT and X-ray	available LIDC-IDRI
nce	Abril et al.		Network or TRCT-GAN,	images from a large	dataset included CT
source			utilizes natural language	dataset. Such dataset	scans from 1,018 lung
not		1.	processing (NLP) techniques to	is not easy to get since	cancer patients.
found.			find the association between	it could be expensive	
			biplanar CT and X-ray images.	and time-consuming.	
ı			The generator is the model	The model is under	
			component responsible for	construction and is	
			providing fake CT images	still improved upon.	
			while the discriminator	Furthermore, the	
			separates the real CT images	model has not	
			from the fake ones. The 3D	undergone clinical	
			reconstruction phase will take	validation, which	
			place after the model has been	reflects how well the	
			built through training.	model could work in	
				practice.	
Error!	Wang,	2023	X-ray to CT Generative	• The model may not	The LIDC-IDပါတ -
Refere	Yufeng ;		Adversarial Network (X2CT-	be well generalized to	IDDI - Multi Madal
nce	Sun, Zhan		GAN) is based on a standard	other datasets because	IDRI Multi-Modal
source	Li ; Zeng,		CNN architecture. The CNN	it may be biased for	collection contains 2D
not	Zhigang et		has the ability to learn the	the specific dataset it	Lung X-ray images and 3D CT scans.
found.	al.		spatial correlations between the	was trained from.	3D C1 Scans.

			pixels within the biplane X-ray	• The quality of the	
			images for CT reconstruction.	biplanar CXR images	
			The GANs part is then the same	can factor into the	
			as the TRCT-GAN. The CNN-	model. The model	
			based architecture is more	may not faithfully	
			computationally efficient. This	reproduce accurate	
			is the key difference.	CT images if the bi-	
				planar CXR images	
				are noisy or contain	
				artifacts.	
Error!	Shiode,	2019	U-Nets are a variation of a		Sourced particularly for
Refere	Ryoya et		CNN architecture that is	•Bones	this research. 105 x-ray
nce	al.		effective in tasks like image	overlapping:19 we	images, 173 CT images
source			segmentation and	might not want to	containing a multimodal
not			reconstruction. The U-Net has	separate the radius	dataset.
found.			an encoder path that associates	from ulna in X-ray	
			features from the input image	images because they	
			followed by a decoder path that	overlap. •Presence of	
			reconstructs the output image	metal implants: The	
			using the features that were set	XR images may have	
			aside in the encoder path. The	artifacts from	
			U-Net is organized	implanted metal in the	
			symmetrically.	wrist. CNNs are	
			Encoder path:	sensitive to artifacts	
			Input image	and XR image noise.	
			Convolutional layers	Thus, inaccurate	
			Max pooling layers	reconstruction may	
			Decoder path:	arise from this.	
			Up-sampling layers		
			Convolutional layers		
			Output image		
Error!	Y. Gao et	2021	The Spine Reconstruction	It's in question	The segmentation
Refere	al.		CNN-Transformer (SRCT)	whether 3DSRNet can	benchmark for multi-
nce			design is employed by	be used with larger	detector CT images has
source			3DSRNet, a generative	data sets, because it's	374 CT scans from 355
not			adversarial network (GAN)	based on a small data	patients and has precise
found.			design. In order to extract long-	set of 1,000 x-ray	centroid and voxel level
			range interactions within the	pictures and spine	annotations.
			spine structure, the SRCT	models. Even though	
			design employs a transformer.	it was trained on data	

the
ging
sing
8
į

			by aligning the SSM with the	identify the one that is	
			X-ray images.	the most accurate	
			Triangular-	given the ambiguity.	
			surfaced representations are ref		
			erred to as mesh-based		
			models. 3D models can		
			be generated from X-ray		
			scans using techniques like vol		
			ume reconstruction,		
			which creates the model from		
			the scanned object's 3D		
			volume, and surface		
			reconstruction,		
			which constructs the model's		
			surface from the X-ray data.		
Error!	Dong,	2015	An MV-SIR model runs with a	Sensitivity to image	The collection includes
Refere	Xianling		CNN, based on the ResNet	quality – The MV-	600 chest CT scans with
nce	et al.		model. The CNN processes	SIR model is very	1,900 lung nodules. The
source			three separate images of a lung	sensitive to the input	authors used this project
not			nodule: axial, coronal and	CT image quality. If	in the development and
found.			sagittal. It also utilizes a second	the images have noise	evaluation of their MV-
			input, which is a 2D image of	or blur, the model	SIR model. They
		- 9	the region of the nodule. The	may not accurately	created two parts of the
			second input is generated using	partition lung	dataset: 200 CT images
			a simple algorithm developed	nodules.	for testing and 400 CT
			to segment the nodule region	• Computing cost – it	images for training.
			from the CT scans. This	is computationally	
			secondary input serves as a	expensive to train and	
			guide for the model to properly	run the MV-SIR	
			segment the nodule of interest.	model. It is a deep	
				learning model, which	
				requires extensive	
				computing capacity.	
Error!	Hosseinia	2023	Mathematical techniques	• Quality of the input:	The Medical Imaging
Refere	n, S. and		known as statistical shape	CXR images that are	and Analysis
nce	Arefi, H.		models (SSMs) are employed	noisy or grainy could	Laboratory (MIAL)
source			to describe and analyze an	yield inaccurate	dataset includes CT and
not			object's form. SSMs can be	reconstructions of the	MR images of various
found.			employed to model 3D	underlying anatomy.	regions of the body
			anatomical models from X-ray		(head, neck, chest,

images for medical imaging purposes. This enables researchers to find the true shape of the anatomy in three dimensions using the SSM and comparing it to X-ray images. Deformable models easily flexible 3D representations that can be adjusted others. accommodate different datasets. Several X-ray images can be utilized to design 3D anatomical models with these models. This is done by distorting the model until it aligns with the X-ray data. Atlas-based strategies: These

• Complexity of anatomy: Some anatomy (for example overlapping organs or complex structures) lend themselves more easily to accurate reconstruction than others.

abdomen, and pelvis). SpineWeb includes 3D models of the spine, and multi-angle chest X-ray images from individuals with spinal disorders.

• Atlas-based strategies: These methods utilize a pre-existing atlas that possesses complete anatomical information. In the process of recreating a three-dimensional replica of an anatomical feature from multiple X-ray images, this atlas serves as a reference.

•Voxel-based methods: These methods segment the visual area into tiny cubes referred to as voxels. Subsequently, a label is assigned to each voxel, facilitating the construction of a three-dimensional representation of the object.

DISCUSSION AND FINDINGS

The studies reviewed allude to an increasing focus on filling the gap between 2D imaging techniques such as CXR and volumetric 3D anatomical reconstructions with the help of computer vision and artificial intelligence. Various approaches, from the conventional geometric methods to deep learning-driven generative models, have been investigated with varying strengths and weaknesses.

- 1. Traditional Geometric Approaches: Research works such as [2] and [3] use methods like Iterative Closest Point (ICP) and Volumetric Fusion that are based on aligning and fusing multiple views. Although they provide interpretability and reasonable spatial accuracy, they are time-consuming computationally and noisy/artifact-prone in CXR images. Additionally, they tend to generalize poorly across datasets with diverse anatomical complexities or acquisition conditions.
- 2. CNN and Transformer-Based Approaches: Higher-order deep learning models, including DenseNet-121 [1], U-Net [6], and CNN-Transformer hybrids [7], possess great promise in feature extraction and anatomical localization. They are capable of learning spatial patterns and provide greater robustness than geometric techniques. Nevertheless, they usually require large annotated databases, are data-sensitive, and overfit when training with small or unbalanced datasets.
- 3. Generative Adversarial Networks (GANs): Various GAN-based models, to include X2CT-GAN [5], TRCT-GAN [4], and 3DSRNet [7], found initial promise for producing a realistic CT-like volume from biplanar CXR images. These models utilize feedback from the discriminators to improve generation quality, but often suffer from instability in training, limitations in training data, and lack of clinical validation. While CNN-GAN hybrids such as X2CT-GAN have computational efficiency that makes them more reasonable for use, the same dataset bias and sensitivity to noise are still limiting concerns.
- 4. Shape and Atlas-Based Reconstruction: Shape-based modeling [8,10], including Statistical Shape Models (SSMs), deformable models, and voxel-based segmentation methods provide anatomically-constrained and explainable and intuitive reconstructions. They are less well suited to generate accurate pathological or abnormal cases, and reference prior statistical models or atlases that describe the types of anatomical variations of interest while describing population-level differences in shape.
- 5. Dataset Variability and Utilization: A large number of studies draw upon existing datasets like CheXpert, MIMIC-CXR-JPG, and LIDC-IDRI, allowing them access to large-scale, annotated chest imaging data. Yet, the absence of paired X-ray and CT scans is a big challenge for supervised 2D-to-3D reconstruction tasks. A few studies utilize synthetic data or address limited pathologies (e.g., pneumothorax, spine diseases), which restricts generalizability.
- 6. MedNeRF A Neural Rendering Method: The use of Medical Neural Radiance Fields (MedNeRF) offers a new solution by modeling the thoracic structure implicitly as a 3D radiance field. In comparison to explicit voxel-based or surface-based approaches, MedNeRF:

Learned continuous 3D representations from sparse 2D views.

Provides enhanced detail preservation, particularly for internal anatomy.

Accommodates easily to novel viewpoints and noise via neural generalization.

It still needs, though: Multi-view CXR inputs, which are not always provided in typical clinical settings.

Increased training time because of optimization of volumetric rendering.

CONCLUSION

In summary, the conversion of 2D chest X-rays to 3D anatomical representations is a monumental step forward in improving diagnostic imaging and patient-specific care. Existing literature demonstrates that while geometric methods have provided a starting point for developing techniques, state-of-the-art deep learning, generative models,

and neural implicit representations such as MedNeRF, are superior, more flexible, and have the ability to understand detailed constituent parts of anatomy or important structures.

MedNeRF is particularly noteworthy as an efficient, detail-preserving method for performing maximal maximum thoracic reconstruction utilizing neural radiance fields (and allowing the clinician to view the chest anatomy from multiple novel perspectives). Methodologies such as these allow the clinician to perform better localization of disease and better scrutiny of risk factors, thereby increasing the possibility of good or improved outcomes both in the context of radiological characterisation and surgical planning.

Despite these advantages, MedNeRF - and the majority of the models reviewed - have several limitations, including: Reliance on multi-view data (not often available in routine practice for CXR;

Vulnerability to imaging noise and artefacts;

Clinical validation for adoption into the health care landscape.

FUTURE WORK

To maximize the clinical value of 3D reconstruction from CXR images, some research directions are suggested:

- 1. Multi-View Data Collection and Standardization: Establish protocols for acquiring standardized multi-view CXRs as part of standard exams. Employ synthetic data augmentation or simulation (e.g., through GANs) to fill in the data gap when multi-view inputs are unavailable.
- 2. Hybrid and Explainable Models: Integrate MedNeRF with anatomical priors or statistical shape models (SSMs) for anatomical accuracy and interpretability improvement. Develop explainable AI (XAI) mechanisms in neural rendering frameworks for transparency in clinical application.
- 3. Real-Time and Low-Resource Optimization: Prioritize speeding up MedNeRF training and inference with lightweight architectures or hardware acceleration (e.g., tensor cores, pruning). Guarantee feasibility in low-resource health settings through model compression and knowledge distillation.
- 4. Clinical Validation and Deployment: Perform reader studies and clinical trials to compare 3D outputs generated by MedNeRF to standard-of-care CT/MRI. Develop end-to-end integrated diagnostic platforms that integrate 3D visualizations, radiologist reports, lesion tracking, and quantitative metrics.
- 5. Generalization and Robustness: Increase data coverage over age, sex, pathology, and imaging hardware to enhance generalization. Implement domain adaptation methods to render models robust across various hospitals or imaging modalities.

REFERENCES

- [1] J. Ni et al., "Enhance Chest X-ray Classification with Multi-image Fusion and Pseudo-3D Reconstruction," 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1-8, doi: 10.1109/IJCNN55064.2022.9892095.
- [2] Khan U, Yasin A, Abid M, Shafi I, Khan SA. A Methodological Review of 3D Reconstruction Techniques in Tomographic Imaging. J Med Syst. 2018 Sep 4;42(10):190. doi: 10.1007/s10916-018-1042-2. PMID: 30178184.
- [3] C. Koehler, T. Wischgoll and F. Golshani, "Reconstructing the human ribcage in 3d with x-rays and geometric models," in IEEE MultiMedia, vol. 17, no. 3, pp. 46-53, July-September 2010, doi: 10.1109/MMUL.2010.5692182.

- [4] Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H. P., & Willcocks, C. G. (2022). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. https://doi.org/10.1109/embc48229.2022.9871757
- [5] Yufeng Wang, Zhan-Li Sun, Zhigang Zeng, Kin-Man Lam, TRCT-GAN: CT reconstruction from biplane X-rays using transformer and generative adversarial networks, Digital Signal Processing, Volume 140, 2023, 104123, ISSN 1051-2004, https://doi.org/10.1016/j.dsp.2023.104123.
- [6] X. Ying, H. Guo, K. Ma, J. Wu, Z. Weng and Y. Zheng, "X2CT-GAN: Reconstructing CT From Biplanar X-Rays With Generative Adversarial Networks," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 10611-10620, doi: 10.1109/CVPR.2019.01087.
- [7] Shiode, R., Kabashima, M., Hiasa, Y. et al. 2D–3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks. Sci Rep 11, 15249 (2021). https://doi.org/10.1038/s41598-021-94634-2
- [8] Y. Gao et al., "3DSRNet: 3-D Spine Reconstruction Network Using 2-D Orthogonal X-Ray Images Based on Deep Learning," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-14, 2023, Art no. 4506214, doi: 10.1109/TIM.2023.3296838.
- [9] Maken, P., Gupta, A. 2D-to-3D: A Review for Computational 3D Image Reconstruction from X-ray Images. Arch Computat Methods Eng 30, 85–114 (2023). https://doi.org/10.1007/s11831-022-09790-z
- [10] Hosseinian, S. and Arefi, H.: 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES REVIEW AND EVALUATION OF EXISTING METHODS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W5, 319–326, https://doi.org/10.5194/isprsarchives-XL-1-W5-319-2015, 2015.
- [11] Dong, X., Xu, S., Liu, Y., Wang, A., Saripan, M. I., Li, L., Zhang, X., & Lu, L. (2020). Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation. Cancer imaging: the official publication of the International Cancer Imaging Society, 20(1), 53. https://doi.org/10.1186/s40644-020-00331-0
- [12] Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H., & Willcocks, C.G. (2022). MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware CT-Projections from a Single X-ray. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 3843-3848.
- [13] Pechin Lo, Bram van Ginneken, Joseph M. Reinhardt, Tarunashree Yavarna, Pim A. de Jong, Benjamin Irving, Catalin Fetita, Margarete Ortner, Romulo Pinho, Jan Sijbers, Marco Feuerstein, Anna Fabijanska, Christian Bauer, Reinhard Beichel, Carlos S. Mendoza, Rafael Wiemker, Jaesung Lee, Anthony P. Reeves, Silvia Born, Oliver Weinheimer, Eva M. van Rikxoort, Juerg Tschirren, Ken Mori, Benjamin Odry, David P. Naidich, Ieneke Hartmann, Eric A. Hoffman, Mathias Prokop, Jesper H. Pedersen, and Marleen de Bruijne, "Extraction of airways from ct (exact'09)," IEEE Transactions on Medical Imaging, vol. 31, no. 11, pp. 2093–2107, 2012
- [14] Shoulie Xie, Weimin Huang, Tao Yang, Dajun Wu, and Huiying Liu, "Compressed sensing based image reconstruction with projection recovery for limited angle cone-beam ct imaging," in 2020 42nd Annual

- International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 2020, pp. 1307–1310.
- [15] S. Delorme, "Assessment of the 3D Reconstruction and High-Resolution Geometrical Modeling of the Human Skeletal Trunk from 2D Radiographic Images", IEEE Trans. Biomedical Eng., vol. 50, no. 8, pp. 989-998, 2003.
- [16] S. Benameur, "Three-Dimensional Biplanar Reconstruction of Scoliotic Rib Cage Using the Estimation of a Mixture of Probabilistic Prior Models", IEEE Trans. Biomedical Eng., vol. 52, no. 10, pp. 1713-1728, 2005.
- [17] H. Lamecker, T. H. Wenckebach and H. Hege, "Atlas-Based 3D-Shape Reconstruction from X-Ray Images", Proc. Int'l Conf. Pattern Recognition, vol. 1, pp. 371-374, 2006.
- [18] H. Wechsler, "Image Processing Algorithms Applied to Rib Boundary Detection in Chest Radiographs", Computer Vision Graphics and Image Processing, vol. 7, no. 3, pp. 375-390, 1978.
- [19] F. Plourde, F. Cheriet and J. Dansereau, "Semi-Automatic Detection of Scoliotic Rib Borders Using Chest Radiographs", Studies in Health Technology & Informatics, vol. 123, pp. 533-537, 2006.
- [20] Tri Huynh, Yaozong Gao, Jiayin Kang, Li Wang, Pei Zhang, Jun Lian, and Dinggang Shen, "Estimating ct image from mri data using structured random forest and auto-context model," IEEE Transactions on Medical Imaging, vol. 35, no. 1, pp. 174–183, 2016
- [21] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth, "NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections," in CVPR, 2021
- [22] Lee, S., Kim, H., Kim, H., Choi, J., and Cho, J., Comparison of image enlargement according to 3D reconstruction in a CT scan: Using an aneurysm phantom. J. Korean Phys. Soc. 72(7):805–810, 2018.
- [23] Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., and Wang, R.: 3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks. In: Proceedings of the International Conference on 3D Vision (3DV) 2017, 2017.
- [24] Li, G., Xie, H., Ning, H., Citrin, D., Capala, J., Maass-Moreno, R., Guion, P., Arora, B., Coleman, N., Camphausen, K., and Miller, R., Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments. J. Appl. Clin. Med. Phys. 9(4):17–36, 2008.
- [25] Ge Wang, Jong Chu Ye, Klaus Mueller, and Jeffrey A. Fessler, "Image reconstruction is a new frontier of machine learning," IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1289–1296, 2018.
- [26] Yinsheng Li, Ke Li, Chengzhu Zhang, Juan Montoya, and GuangHong Chen, "Learning to reconstruct computed tomography images directly from sinogram data under a variety of data acquisition conditions," IEEE Transactions on Medical Imaging, vol. 38, no. 10, pp. 2469–2481, 2019
- [27] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger, "Graf: Generative radiance fields for 3d-aware image synthesis," in Advances in Neural Information Processing Systems (NeurIPS), 2020.
- [28] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa, "pixelNeRF: Neural radiance fields from one or few images," in CVPR, 2021
- [29] Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien Nguyen, and Ngai-Man Cheung, "On data augmentation for gan training," IEEE Transactions on Image Processing, vol. 30, pp. 1882–1897, 2021

- [30] Johnson AE, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng CY, Mark RG, Horng S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data. 2019;6.
- [31] Johnson AE, Pollard TJ, Greenbaum NR, Lungren MP, Deng C-Y, Peng Y, Lu Z, Mark RG, Berkowitz SJ, Horng S. MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042. 2019.
- [32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng, "Nerf: Representing scenes as neural radiance fields for view synthesis," in Computer Vision –
- [33] ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and JanMichael Frahm, Eds., Cham, 2020, pp. 405–421, Springer International Publishing.

